Joint coding-denoising optimization of noisy images
نویسندگان
چکیده
In this paper, we propose to study the problem of noisy source coding/denoising. The challenge of this problem is that a global optimization is usually difficult to perform as the global fidelity criterion needs to be optimized in the same time over the sets of both coding and denoising parameters. Most of the bibliography in this domain is based on the fact that, for a specific criterion, the global optimization problem can be simply separated into two independent optimization problems: The noisy image should be first optimally denoised and this denoised image should then be optimally coded. In many applications however, the layout of the acquisition imaging chain is fixed and cannot be changed, that is a denoising step cannot be inserted before coding. For this reason, we are concerned here with the problem of global joint optimization in the case the denoising step is performed, as usual, after coding/decoding. In this configuration, we show how to express the global distortion as a function of the coding and denoising parameters. We present then an algorithm to minimize this distortion and to get the optimal values of these parameters. We show results of this joint optimization algorithm on classical test images and on a high dynamic range image, visually and in a rate-distortion sense.
منابع مشابه
Biomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected ...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملNoisy images edge detection: Ant colony optimization algorithm
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...
متن کامل